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DYNAMIC DISINTEGRATION AND EXPANSION OF A LIQUID VOLUME 

R. M. Aksenov, A. A. Zverev, O. V. Kovalenko, 
V. K. Sirotkin, and E. V. Sumin 

UDC 532.528 

The process of dispersing (disintegrating) a liquid volume and forming a droplet-air 
cloud during an explosion can be divided into the following [three] stages. The first -- the 
propagation of an explosive wave which arises when the charge detonates -- is essentially 
determined by an explosion in an unbounded liquid, and has been studied theoretically and 
experimentally [i-5]. 

The second stage starts when the shock wave propagating through the liquid reaches a 
free surface, reflects, and produces a rarefaction. The tensile stress which arises behind 
the rarefaction front leads to the intense production of vapor-gas bubbles - the cavitation 
phenomenon [3, 6-8]. The solution to the problem of bubble cavitation has been examined in 
[9-14]. In particular, the explosive loading of a cylindrical liquid layer has been studied 
in [15-18]. Depending on the magnitude of the specific energy release it has been established 
that either cavitation disintegration or hydromechanical perturbations (of the Rayleigh-Taylor 
type) can occur on the inner and outer surfaces of the liquid volume. A break-away disinter 
gration, which has been observed experimentally [3, 19] is also possible. The second stage 
ends when the volume concentration of bubbles in the liquid reaches a critical value, at which 
an inversion process takes place: the bubble-filled liquid transforms to a droplet stage. 

The third stage starts with the formation of a droplet-vapor mixture; as it moves it is 
blown by the reverse flow of the surrounding air on the outer boundary and by the detonation 
products on the inner boundary. The expansion of the initial finely dispersed particles or 
droplets and estimates of the dimension of the resultant droplet-air cloud is discussed in 
[20] and [21]. 

Here we study the problem of the explosive dispersion of a liquid volume, the subsequent 
expansion of the resultant droplet-air cloud [22] in spherical and cylindrical geometry, and 
propose an approximate numerical model. The problem is examined for large-scale phenomena 
when the relaxation time of the tensile stresses in the rarefaction wave are small compared 
to a characteristic hydrodynamic time scale. 

I. We study a solid chemical explosive charge with an initial density Pex and radius 
R0c which is surrounded by a liquid layer with a radius R0k. The initial liquid pressure is 
P01 with density P01" The liquid is surrounded by infinite air with an initial pressure P02 
and density P02- In the spherical case it is assumed that at time t = 0 an energy W is 
instantaneously released in a volume v i = 4/3~R~c; the intial pressure Pi of the detonation 
products is found from [5] 
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1 D2 Pi  = ~- 9ex ( 1 . 1 )  

where D is the detonation wave velocity. The discussion is similar for the cylindrical case; 
however the initial energy determined is W/H, where H is the legnth of the explosive material 
and the liquid layer; that is, the calculation is done for a liquid ring. 

The detonation of a solid explosive in a liquid layer surrounded by infinite air is de- 
scribed by a system of one-dimensional transient hydrodynamic equations, which in Lagrangian 
variables are written as follows [23, 24]: 

Or 

dt 

( 1 . 2 )  

Vo ( •  op ; ( i .  3) 
at - -  k ro ] E 

{ (1.4) V = V 0 tT- /  0-7; 
\ O/ 0 

Oe aV 
a--F = P a t "  ( 1 . 5 )  

Here n is 2 or 3 for cylindrical or spherical geometry; r is the Eulerian coordinate; r 0 is 
the Lagrangian coordinate; V = i/p is the specific volume; p is the pressure; p is the density; 
u is the mass velocity; e is the internal energy per unit mass; and t is the time. We empha- 
size that Eqs. (1.2)-(1.4), along with the equation of state (1.6) given below, determine the 
dynamic characteristics of the explosion, and (1.5) determines the energetic characteristics 
of the explosive process. 

After the explosion a (spherical or cylindrical) shock wave propagates through the liquid 
volume and will attenuate over time due to dissipation at the front and to geometric expan- 
sion. According to estimates [5, 25], a shock wave propagating through a liquid is a weak 
shock almost from the beginning; that is, its properties do not differ too much from those 
of an acoustic wave. At the wave front, the change in entropy is small and the compression 
of the liquid is insignificant. These discussions [5, 25] verify the use of the Tate equation 
[5] for the liquid equation of state: 

F/9  \~liq ] (1.6) 

P =  ?liq k \9~i] - -  J 
where Cli q and Yliq are the sound speed and adiabatic index of the liquid. We will assume 
that cavitation starts at p = O. We introduce a unit [Heavyside] function which considers 
the effect of cavitation: 

P = - 

We n o t e  t h a t  Eq. ( 1 . 6 )  c o r r e s p o n d s  t o  t h e  l i m i t i n g  e a s e  where  t h e  t e n s i l e  s t r e s s  in  t h e  
l i q u i d  r e l a x e s  i n s t a n t a n e o u s l y  a t  z e r o  p r e s s u r e .  T h i s  a p p r o x i m a t i o n  i s  v a l i d  when t h e  c h a r a c -  
t e r i s t i c  stress relaxation time in the liquid tp (according to [9], tp = 10 -7 sec) is much 
less than the characteristic hydrodynamic time t h ~ L/Cliq, where L is the characteristic 
dimension of the liquid layer. 

The air surrounding the liquid and the detonation products are considered to be an ideal 
gas, with the equation of state: 

~ d  P ---- p i ( R o c / R c )  , 

Here the adiabatic index of the detonation products is Yd : YI : 3 for p s Pk and Yd = ~2 : 
1.4 for p < Pk, where Pk is a joining pressure for the double-branched adiabat. This pressure 
is determined in analogy with [2] by the equation 
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a/2. 
Pk=~ [?i--72 [ Pivi 

The equation of state for air has the form p = p02(p2/p02)Yg, where yg is the adiabatic index 
of air. 

The above equations of state and the equation of motion of the bubble-filled liquid cor- 
respond to an equilibrium two-phase method [26]: T I = T 2 ={T(p), Pl =p2, andu I =u 2, where 
the subscripts 1 and 2 indicate the liquid and the bubbles, respectively, and T is the temper- 
ature. The motion of the equilibrium mixture in this case is described by a system of equa- 
tions for a single-phase continuous medium (liquid) with equations of state determined by 
the phase properties. If we assume that this liquid has a high boiling temperature and the 
pressure of the saturated vapor is much less than the background pressure, then the equilib- 
rium system is expressed by a system with p = 0 in the cavitation zone. 

2. The cavitation mechanism for breaking up the bubble-filled liquid into a droplet 
structure (inversion) has a topologically static character. It is assumed that due to the 
chaotic spatial distribution of the bubbles, there are regions were they bunch together and 
where their local volumetric concentration is high enough for them to agglomerate. This 
agglomeration of bubbles (clusterization) occurs as breaks along some surfaces which, by inter- 
secting with each other, lead to the formation of a droplet structure. 

According to [9], in the original liquid, the initial concentration of cavitation nuclei 
is 109-1012 m -3, the volumetric content of the dispersed phase is a 2 - 10-11-10 -4 , and the 
average radius of the nuclei is 10-s-10 -7 m. We will assume that the initial dimensional 
distribution of nuclei is exponential 

dn = (No~q) exp ( - - r /q )  dr, 

w h e r e  N O i s  t h e  c o n c e n t r a t i o n  o f  g r o w i n g  b u b b l e  n u c l e i  p e r  u n i t  v o l u m e ,  a n d  r 1 : 10 - s  m i s  t h e  
i n i t i a l  d i m e n s i o n  o f  a b u b b l e  n u c l e u s  i n  t h e  l i q u i d .  I n t e g r a t i o n  o f  t h i s  e x p r e s s i o n  g i v e s  t h e  
n u m b e r  o f  b u b b l e s  i n v o l v e d  i n  a c t i v e  g r o w t h  

n = N oexp (-- r , / q )  = N o exp (-- o/ ( lpo[q) ) ,  ( 2 .  i) 

where we consider the fact that for a given tensile stress IP01, bubbles with dimensions larger 
larger than a threshold r 0 o/Ip01 will grow irreversibly, where o is the surface tension 
coefficient of the liquid. This expression for the cavitation threshold follows from an 
analysis of the equilibrium of a single bubble in a surrounding liquid with the aid of the 
Rayleigh--Lambequation. 

By examining this relaxation process of the tensile stresses due to the growth of the 
dispersed phase, it is not difficult to obtain an estimate for the amplitude of the tensile 
stresses as the product of the pressure gradient in the rarefaction wave, the sound speed in 
the liquid, and the characteristic relaxation time for the tensile stresses: 

IP0l ~ ,  l i q  ~ l ,611-1 /a  - -  ( 2 . 2 )  

Here Lp is the width of the rarefaction front; Pm is the amplitude of the decaying shock wave; 
and n is the number of incipient bubbles per unit volume. By combining Eqs. (2.1) and (2.2) �9 
it is possible to make a quantitative estimate of the bubble density n as a function of the 
distance from the center of the explosion. 

The average diameter d of the droplets, which form during the cavitational disintegration 
of the bubble-filled liquid, is determined by the density of growing bubbles n. From a I/s topological statistical argument it follows that d = An- . An investigation of the droplet 
formation stage, based on the agglomeration of growing bubbles [27], shows that the propor- 
tionality coefficient A is on the order of unity. Within the framework of this approach, the. 
dispersion composition of the droplet mixture can be controlled by changing the number of 
growing bubbles by changing the distribution of initial cavitation nuclei in the liquid (2.1). 

By introducing the notation X = (N0/n) I/a = d/d 0 for d o = N~ I/s, for ordinary liquids we 
obtain the transcendental equation 

X61~ln X = a6/~, 
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where a depends on the parameters of the decaying wave and the properties of the liquid 

( cJ )T/s LpPolC~'liq 
3qPoicfi q Prod0 

3. A n a l y s i s  o f  1) t h e  g e n e r a t i o n  o f  t h e  R a y i e i g h - T a y l o r  i n s t a b i l i t y  a t  t h e  boundary  
be tween  t h e  d e t o n a t i o n  p r o d u c t s  and t h e  l i q u i d  and 2) t h e  s u b s e q u e n t  d i s i n t e g r a t i o n  o f  t h e  
l i q u i d ,  r e d u c e s  t o  s o l v i n g  t h e  p rob lem o f  m o t io n  o f  a symmet r i c  l i q u i d  l a y e r  w i t h  a c o n s i d -  
e r a t i o n  o f  l i q u i d  mass r emova l  f rom i t s  s u r f a c e  due t o  t h e  g rowth  and s p a l l a t i o n  o f  p e r -  
t u r b e d  l i q u i d  m i c r o l a y e r s .  

We w i l l  examine  t h e  a c c e l e r a t i o n  o f  a l i q u i d  l a y e r  by t h e  gaseous  d e t o n a t i o n  p r o d u c t s .  
A c c o r d i n g  t o  [ 2 6 ] ,  t h e  a m p l i t u d e  6 o f  harmonic  p e r t u r b a t i o n s  o f  t h e  i n t e r p h a s e  boundary  i n -  
c r e a s e  w i t h  t ime  as  6 = ~ 0 " e x p ( Y t ) ,  where  

[o~- p, 2n a 8n3] ~I~ (3.1) 

(a is the acceleration of the layer and b is the wavelength of the perturbation). In Eq. 
(3.1) a term inside the square brackets which corresponds to the destabilizing effect of the 
mutual tangential motion of the liquid and the gas is omitted. In determining the sign of 
the first term in (3.1), we must consider that a > 0 if the acceleration is directed from the 
gas to the liquid. That is, in our case, the acceleration of the layer is a destabilizing 
factor on its inner surface; here the corresponding term in Eq. (3.1) for the increment [I] 
is positive. The Rayleigh-Taylor instability of the interphase boundary occurs when the 
condition I > 0 is fulfilled for b < 2r, where r is a characteristic radius of the layer, 
which for Pi >> P2 gives a criterion for disintegration of the layer: Bo = 4r~pia/o > Bo, ~ 

4~ z, where Bo is the Bond number. We assume that the spallation of the perturbing microlayer 
occurs at a time t, when the amplitude of the perturbation is equal to half a wavelength. 
This does not contradict the assumption [26] that the dimension of the spalling droplet (or 
the amplitude of the perturbation) is on the order of a wavelength. The last condition makes 
it possible to determine the wavelength b, which corresponds to the fastest growth of the 
perturbations : 

b, ~ r V 12 Bo, /Bo .  

Here the minimum time for disintegration - or the spallation of a single liquid microlayer - 
is written as 

t ,  = t (b,) . .~  la \250 7 \ Bo } ( 3 . 2 )  

I f  we assume t h a t  t h e  l o g a r i t h m  in  ( 3 . 2 )  i s  e q u a l  t o  u n i t y  and c o n s i d e r  t h e  f a c t  t h a t  t h e  
a c c e l e r a t i o n  o f  t h e  l i q u i d  l a y e r  by t h e  gas  p r e s s u r e  p has  t h e  form a = p / ( p i & ) ,  where  &( t )  i s  
t h e  l a y e r  t h i c k n e s s ,  we o b t a i n  t h a t  t h e  s p a l l a t i o n  t i m e  f o r  t h e  p e r t u r b e d  m i c r o l a y e r  i s  n o t  
an e x p l i c i t  f u n c t i o n  o f  t h e  r a d i u s  r :  

t ,  = ( 3 . 3 )  

\ 7 )  
The m o t i o n  o f  t h e  l i q u i d  l a y e r  c o n s i d e r i n g  mass l o s s  f rom i t s  s u r f a c e  i s  d e s c r i b e d  by t h e  

e q u a t i o n  

n (p (t) - -  P2) a8 -~ = P~ (R~ --  U~ ) i~  -I- ~ 'n, ( 3 . 4 )  

where p(t) = pi'(R0c/Rc)nYd; m is the mass per unit length of the liquid layer; and the super- 
script dots indicate differentiation with respect to time. The mass loss rate ~ is related 
to the flux w of the liquid from the surface by the relationship ~ = -2~'RcW [w = (i/2)p i" 
<u>]. The velocity of the perturbed liquid surface changes from zero at the moment the per- 
turbation starts to u, = I (b,)'b, at the moment the perturbation spalls off. The average 
surface velocity is <u> = I(b,)'b,'(e + l)/(2e); here it is assumed that the amplitude of the 
perturbation at the moment of spallation increases by a factor of e. 
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4 .  In estimating the maximum dimension of the cloud, we do not consider the effect 
of the detonation products on the dispersion of the droplet mixture. We also do not consider 
the additional fragmentation of the flying droplets by the counterflow of the surrounding 
air. We assume that, when the inversion front ceases in the Lagrangian coordinate system, the 
pressure decreases inside and around the cloud, and an intense saturation begins in the sur- 
rounding air at a rate which gradually becomes constant. The region encompassed by satura- 
tion slowly (logarithmically) expands with time. We will neglect the logarithmic change of 
the saturation depth with time. In this approximation the boundary is taken to be impermeable 
to gas, the outwardly expanding cloud is only "mashed" on the side of the boundary, and the 
cloud itself acts on the surrounding air like a spherical piston. By assuming no permeation 
through the cloud boundary, we obtain a formula for the pressure drop 

where u z is the velocity of the permeation from relative to the initially immobile droplets. 
This pressure drop within the cloud represents the pressure at the cloud boundary, because 
within the cloud the pressure is zero ahead of the permeation front. On the other hand, the 
pressure at the cloud boundary is composed of the external (atmospheric) pressure and the 
dynamic pressure drop of the decelerating air. For a spherical piston and an incompressible 
liquid, the expression for the dynamic pressure drop can be written as 

Ap = P2 + 92 ~z,  ( 4 . 2 )  

which does not include the acceleration of the boundary and which agrees well with the results 
of [28] for a spherical piston in a compressible gas (R is the radius of the cloud boundary). 
By equating the boundary pressures (4.1) and (4.2) within and around the cloud, and also by 
considering the symmetry of the problem Pz " R-n, we obtain a differential equation for the 
cloud boundary in a dimensionless form 

(1 - -  y)2Qoy-'~= e ~ f ,  

w h e r e  Q0 = P l (  t = 0 ) / P 2 ;  Y = R/Rok; r = t / t 0  = u 0 t / R 0 k ;  M = u 0 / C g ;  z = p 2 / ( p 2 u ~ )  = 1 / ( ~ g M 2 ) ;  
u 0 i s  t h e  m a s s  v e l o c i t y  o f  t h e  a i r  l a y e r  n e x t  t o  t h e  f r e e  s u r f a c e  o f  t h e  l i q u i d  a t  t h e  moment 

t h e  i n v e r s i o n  f r o n t  c e a s e s ;  and  Cg i s  t h e  s o u n d  s p e e d  i n  u n p e r t u r b e d  a i r .  I f  t h e  v e l o c i t y  o f  
t h e  c l o u d  b o u n d a r y  i s  e x p r e s s e d  e x p l i c i t l y ,  t h e n  i t  i s  e a s y  t o  s e e  t h a t  i t  g o e s  t o  z e r o  when 

I 
z ' y n ' Q ~  = 1 a n d  t h i s  i m m e d i a t e l y  g i v e s  t h e  maximum e x p a n s i o n  r a d i u s  Rm o f  t h e  c l o u d :  

Here p~ and p~ are the actual densities of the liquid and gas phase; and % is the volumetric 
content of the liquid phase which corresponds to an inversion; and Rs is the radius of the 
liquid-air boundary at the moment the inversion front ceases. A more accurate estimate, which 
considers both the rate disequilibrium of the phases and the Rayleigh-Taylor instability at 
the external boundary of the liquid layer, leads to some correction factors in the last equa- 
tion [29]. 

5. The solution to the problem of an explosion in a liquid layer surrounded by air 
breaks down spatially into three regions: the detonation products, the liquid, and the air. 
The total system of equations which describe the hydrodynamics and the cavitational disinte- 
gration (Secs. 1 and 2) is replaced by a system of finite-difference equations in a 
form analogous to [30], which has a second-order accuracy in the (spatial) coordinates and 
time. An artificial linear and quadratic viscous pressure is introduced to spread out the 
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hydrodynamic discontinuities in a single-pass calculation. The accuracy of the calculation is 
monitored via the conservation of the total energy of the system. In the calculation of the 
surface mass losses of liquid on the internal boundary of the liquid layer due to the devel- 
opment of the Rayleigh-Taylor instability, the initial conditions are taken to the values of 
the inner and outer radii of the liquid layer (R c and R k) and the pressure of the detonation 
products at the moment the inversion front ceases. Then, at each time step, calculations 
are done for the time to develop a perturbation (3.3), the velocity of the discontinuity 
in the perturbation layer of the liquid, and the removal of mass from the surface (3.4). 
Equation (3.4) is represented as a system of two first-order equations and is solved by a 
fourth-order Runge--Kutta method. The final dimension of the droplet-air cloud is deter- 
mined from Eq. (4.3), in which we substitute the calculated dynamic parameters of the liquid 
layer at the moment the inversion front ceases. The calculations are done for Pex = 1"65"103 
kg/m 3, D = 7600 m/sec, P01 = P02 = i00 kPa, P02 = 1.18 kg/m 2, 7g = 1.4, d o = i00 pm, 71i q = 7; 

for water: P0z = 103 kg/m3; Cliq = 1600 m/sec; and o = 0.073 N/m; for glycerin: P0z = 1.26" 

103 kg/m3; Cli q = 1900 m/sec; and o = 0.066 N/m. The basic parameters of the liquid layer 
for spherical symmetry were taken as R0c = 5.1 cm and R0k = 16.7 cm; for cylindrical sym- 
metry, R0c = 0.4 cm and R0k = 2 cm. By convention it is assumed that the moment of the inver- 
sion corresponds to an average volumetric bubble concentration of 50%. In this case, for 
an inversion which is understood as a structural transition from a bubble-filled liquid to 
a droplet-vapor mixture, no additional energy input is required, because at this moment the 
total surface of the interphase boundary of the liquid volume does not change (that is there 
is a phase conversion). Actually, the volumetric concentration of bubbles at the moment of 
inversion can exceed 50% [18], which, however, does not affect the calculated results, because 
long before the moment of inversion the liquid transforms to a state of free expansion. We 
note that the calculated results presented below are for water (unless mentioned otherwise). 

The results of the numerical calculations show that after the shock wave reaches a free 
surface, a reflectedrarefaction wave arises; behind its front a cavitation zone forms (p = 0). 
When the rarefaction wave reaches a gas bubble, as in [17], a jump in the acceleration of the 
adjacent liquid layer is observed, which leads to the agglomeration of the cavitational bub- 
bles. Later, an inversion zone starts to propagate from the free surface of the liquid (more 
precisely from the rear boundary of the thin noncavitational "rind") into the gas bubble. On 
the inversion front, the bubble-filled liquid transforms into a droplet-vapor state. After 
the inversion front ceases in the Lagrangian coordinate system, the following picture is 
formed: the detonation products and the droplet mixture are separated by a noninverted layer 
of liquid which later disintegrates due to the Rayleigh-Taylor instability. Figure 1 shows 
the dimension d/d 0 of the droplet which forms during cavitational disintegration as a func- 
tion of the Lagrangian coordinate r 0 during an explosion in a liquid spherical layer. Curves 
1-3 correspond to values k = R0k/R0c = 3.3 and ~ = 0.048, k = 3.3"vri and ~ = 0.017, and k = 6.6 
and $ = 0.0066. Here B = mex/(mex + mli q) is the filling coefficient and mli q is the mass of 

the liquid layer. From Fig. 1 it can be seen that the function d(r) has a monotonic charac- 
ter: the droplet dimension grows with the distance from the free surface of the liquid layer. 
Moreover, the increase in the filling coefficient 6, which corresponds to a decrease in R0k 

(mex = const), leads to a more detailed dispersion of the liquid layer: the average dimen- 
sion of the droplets being formed decreases. 

During an explosion in a cylindrical liquid layer, most attention is paid to the spatial 
dependence of the dimension of the "Rayleigh-Taylor" droplets which form during scattering 
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from the inner boundary of the liquid layer (Fig. 2), and also to the mass fraction n from the 
various disintegration mechanisms (Fig. 3, where 1 is the region of disintegration due to cavi- 
tation, 2 to the Rayleigh-Taylor instability, and 3 is the liquid layer). As can be seen from 
Fig. 3, the ratio k is determined by the disintegration process of the liquid layer. For k = 
i0, the mass fraction of the liquid layer disintegrated by cavitation reaches a maximum. As k 
increases further, disintegration due to the Rayleigh-Taylor instability becomes dominant. 
We emphasize again that the remaining liquid layer separates droplets formed by cavitation 
from the "Rayleigh-Taylor" droplets. This layer also decays into droplets when it reaches a 
critical thickness at t = t** > t, (on the order of the average distance between the bubbles 
which have grown in the liquid). 

Figure 4 shows the maximum expansion radius of the cloud R m as a function of the filling 
coefficient $. The calculations were done for an explosion in a spherical volume of liquid. 
The horizontal dashed line shows the final dimension of the cloud of the detonation products 
which expand in an explosion in air [14]. A decrease in $ corresponds to an increase in 
R0k. As ~ § 0, there is an initial liquid layer of infinite thickness, in which the rarefrac- 
tion wave, which arises from reflection at the free surface, does not create a cavitation 
zone (and therefore also inversion regions) due to the negligibly small amplitude of the rare- 
faction wave. 

Figure 5 shows the final dimension of the droplet-air cloud as a function of k in cylin- 
drical geometry (curve i is for water and 2 is for glycerin). The choice of liquids and 
geometries in these calculations was determined from results of [15], in which an experimental 
function R(t) was obtained for these liquids for k = 3 and i0 (for each k the curves for 
water and glycerin were rather close, therefore a single average value can be used). By 
using the asymptotic values of R(t) (which determine the dimension of the droplet-air cloud 
at given experiment times [15]) as the final radii and by using the similarity principle with 
respect to /W, we select avalue of the specific energy evolution eex [16], so that in Fig. 5 
the points are shown relative to the calculated optimal curves. These points correspond 
to eex = 25 J/g. We note that the numerical calculations give a larger final dimension of 
the water cloud than does the experiment. The experiments determine the following time 
dependence: at the beginning of the observations (t z = 5 msec) the water cloud is larger 
than the glycerin cloud; then at t2 = 2 msec these curves intersect; and at the end of the 
observation (t 3 = 5 msec) the dimension of the glycerin cloud is larger than the water cloud. 
The divergence can be explained as follows. The results of the numerical calculation show 
that at the moment the inversion front ceases, the dimension of the water cloud is larger 
than the glycerin cloud, which agrees with the experiment. Further on in the calculations 
Eq. (4.3) is used, that is, the stage of the expansion of the droplet cloud is not considered. 
Thus, a more correct comparison of the numerical results with experiments supposes more com- 
plete information on the experiments on one hand and on the other that the expansion of the 
droplet cloud should be calculated within the framework of two-phase hydrodynamics with two 
velocities (as in [21], for example). 
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